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The Reflection from an Open-Ended
Rectangular
Waveguide Terminated by a Layered
Dielectric Medium

VIRON TEODORIDIS, THOMAS SPHICOPOULOS, aND FRED E. GARDIOL, SENIOR MEMBER, IEEE

Abstract —The measurement of reflection from an open-ended wave-
guide is a simple and nondestructive technique for determining the dielec-
tric properties of materials. A flange-mounted waveguide is considered, the
flange being pressed on an unknown material which may be of finite or
infinite thickness. The relationship linking the reflection coefficient to the
dielectric properties is obtained from a theoretical analysis of the electro-
magnetic field in the vicinity of the aperture. The theory includes the
effects of both cross polarization and higher order modes. An integral
equation is obtained, the kernel of which is the dyadic Green function in
each medium. The method of characteristic modes is used for thé numeri-
cal computation. The theoretical results are in good agreement with
experimental measuréments. Furthermore, a simple and h'zindy technique
for data inversion is provided.

I. INTRODUCTION

ODAY, open-ended waveguides are used in a number
of new applications of microwaves and millimeter
waves to the fields of material measurements and biomedi-
cal engineering. Among these are the nondestructive mea-
surement of material properties and medical techniques
such as thermography and hyperthermia. Indeed, the di-
electric properties of an unknown material or biological
tissue can be determined in a noninvasive way from a
measured reflection coefficient, provided a theoretical rela-
. tion to the dielectric properties of the material is available.
The radiation from a waveguide covered by a dielectric
slab received considerable attention several years ago in
order to understand the behavior of antennas on space
vehicles* during the reentry into the Earth’s atmosphere.
The open-ended rectangular waveguide radiating through a
dielectric slab [1}-{3] or directly into the half-space [4], [5]
was first treated approximately by variational methods.
These publications only considered the contribution of the
dominant mode in the aperture field.

Later on, the analysis of the rectangular waveguide
radiating into an infinite dielectric material was made
including higher order modes [6]-[12], but cross polari-
zation was not always taken into account [6], [11]. A
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number of mathematical formulations associated with dif-
ferent physical models have been used to describe the
problem, and various numerical techniques have been ap-
plied. Indeed, beside variational methods [9]-[11], an in-
tegral formulation was developed [6]-[8] as well as a matrix
correlation method [12]. Furthermore, a physical model
considering the half-space as a second waveguide of a very
large cross section was proposed [13). We do not quote
here a number of papers modeling the rectangular wave-
guide as a parallel plate waveguide. Such an approach
neglects, among other effects, the cross-polarized electric
field.

The rectangular waveguide radiating into a layered
medium aroused less attention. A rigorous development
including highér order modes and cross polarization was
made for the dielectric coated waveguide antenna by means
of a variational principle [9]. More recently, a method
using the model of the transition to an oversized waveguide
was suggested for the study of applicators for multilayered
configuration of tissues [14].

This paper presents an integral formulation applicable
either to a stratified or an infinite dielectric medium. The
actual field distribution is considered, including higher
order modes as well as cross polarization. Furthermore, the
contribution of surface waves appears explicitly and the
formulation is suitable for near field calculations.

Boundary conditions specifying the continuity of the
tangential field components yield an integral equation, the
kernel of which is the dyadic Green function inside and
outside the waveguide. This equation is solved by the
method of characteristic modes [17], which yields an eigen-
value equation independent of the excitation.

The solution of the field equation yields the reflection
coefficient for a known dielectric medium, while the solu-
tion of the inverse problem is needed in practice. Hence,
we propose here a simple method for the computation of
the complex permittivity corresponding to a measured re-
flection coefficient.

II. GEOMETRY AND ASSUMPTIONS

The geometry of the problem involves an internal and an
external region, separated by an infinite conducting plane.
The internal region is the inside of the rectangular wave-
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Fig. 1. Geometry of the problem.

Fig. 2. The three basic configurations.

guide, while the external one is the half-space filled by an
isotropic and nonmagnetic dielectric medium (Fig. 1). A
metallic flange terminating the waveguide is represented by
the infinite conducting plane. The aperture itself is mod-
eled as an equivalent magnetic current flowing on the
uninterrupted conducting plane. This current radiates into
both regions, and couples the dominant mode in the wave-
guide to higher order modes. The transverse electric field
may be either parallel or cross polarized with respect to the
dominant mode. Furthermore, we assume that the incident
wave propagates through the dominant mode of the wave-
guide, filled with a lossless dielectric of permittivity ¢ .

The external dielectric medium may be lossy or not, and

fills the half-space z > 0. We have considered three differ-

ent configurations (Fig. 2):

a) infinite dielectric medium of permittivity e filling
the whole half-space,

b) a dielectric medium of finite thickness &, but with
infinite transverse dimensions terminated by a
metallic plane parallel to the flange,

¢) a dielectric medium of finite thickness and un-
terminated, yielding a stratified structure.

IIT. INTEGRAL EQUATION AND METHOD OF RESOLUTION

The aperture, as seen from the outside (z > 0), is re-
placed by a perfectly conducting metallic wall on which
flows an equivalent magnetic surface current ]l?e. Similarly
from the inside, we consider a short-circuit plate termina-
tion on which flows a surface current M, Applying the

nt*

continuity condition of the tangential magnetic field on the

-aperture, one obtains [16]

(%)=~ 3 [ [G(77)+ B, 7)]-8(7) ds". (1)

G represents the external dyadic Green function in the
dielectric medium and B the internal dyadic Green func-
tion in the waveguide. S’ is the aperture area, ﬁl the
transverse component of the incident magnetic field. The
equivalent magnetic current M is proportional to the ac-
tual tangential electric field in the aperture E,. Thus, one
may write

H, =UY,W, (2a)
— oy — = — ® —
M=—-M,=M,_,=¢,X Ea=UO[W1+ Y r,,W,,] (2b)
n=1

where the W,, are the orthogonal transverse dependence
functions of the magnetic field, T is the reflection coeffi-
cient of the dominant mode, T, the relative amplitudes of
the higher order evanescent modes, U, the amplitude of the

incident wave, and Y] its wave admittance.

Taking the scalar product of the incident field by the
magnetic current and applying orthogonality conditions
for the W, one obtains for the reflection coefficient I’

I = (Uozyl)_l <H,M>-1.

3)

An expression equivalent to (3) may be obtained for the
equivalent admittance of the aperture. Indeed, (1) may be
written as [16]

B ==[1/0-T)] [ [6(7,7)+By(7,7)]|-M'as’ (4)
where E) is obtained by omitting the dominant-mode term
in B.

Taking the scalar product of (4) by the magnetic current,
one obtains, using (3)

[Sf M-(G+B,)-M'dS dS’

7
[ [ -5, dS]

s

Equations (1)—(5) are the mathematical expressions which
describe the physical problem, as defined in Section II. The

== U02Y1

- (%)

- method of characteristic modes is used for their resolution.

The characteristic mode currents of a structure form a
set of equations particular to the geometry of the structure
and independent of the excitation. They are the solutions
of an eigenvalue equation, which may be expressed in
matrix form after projection onto a set of arbitrary base
functions. Their scalar product with the excitation yields
the actual current on the structure.
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Let y,, stand for either the integral operator in (1) or
(4). It may be written as

Yop(M) = gop (M) + jbop (M) (6)

where g, and b,, are real symmetric operators and g,
must be a positive semi-definite operator, since the power
radiated by M on S is positive semi-definite {18]. The
current M may be expressed as a linear combination of the
characteristic currents M,, and an eigenvalue equation is
obtained [17]

bop(ﬂk) =>\kgop(ﬁk) (7)

where the power radiated by each characteristic current is
considered to be unitary.

The arbitrary set of base functions used to expand the
characteristic currents is chosen to be the set of transverse
modal functions in the waveguide. The projection of the
characteristic currents on the base functions yields

M k= Z uanVn (8)
n
where u,, are unknown constants.

The scalar product of (7) by ]\7,,,, and replacement of the
characteristic currents by their series expansion (8), yields a
matrix equation

[)u =N [g][u,] 9
in which the matrix elements are
= Wi boy(W,))  8onn= Wrns 8op(W,))- (10)

The resolution of this equation [18], yields the eigenval-
ues A, and eigenfunctions #,. The actual current M,
however, is a function of the excitation. We define now the
coefficients I, by

I, = <Mk’ ﬁ1> (11)

and the actual magnetic current M is found to be [17]
_ I .
M=y —T 5
© 1+ n,) ¢
Once eigenvalues and eigenfunctions are found from (9),
the reflection coefficient and the aperture admittance may

be computed from (3) or (5) using (12), (8), and (2a),
yielding the relations

I, = YIZ

(12)

uk1 -1 Y

%2 -1
L __”L

(13)
where #,; and A, stand for the eigenfunctions and eigen-
values found from the integral operator defined in (1),

while #}, and A% are associated with the integral operator
defined in (4).

B,

(an)E’H__ (1+\P5’H)exp((]n—1hn~1) (1—‘1/f,H)exp(_(]n—lhn~l) (an—l)E’H
(1‘ \Pf’H)eXP(Un—lhn—l) (1 + ‘l’f’H) exp(—U,_ih,_1)
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IV. Dvyapic GREEN FUNCTIONS

When both components of the electric field on the
aperture are considered and when, furthermore, the near
field distribution is to be evaluated, a dyadic Green func-
tion must be used in the integral equation instead of the
scalar one. _

The external dyadic Green function G takes different
forms, according to the geometry of the dielectric medium,
while B is the dyadic Green function in the rectangular
waveguide. When only the transverse part of B is needed, a
simple expression may be found [16]

ﬁ(?? - Z YW(,)W(r,)exp( 'YnZ—ZD

" (14)

In the homogeneous case, G has the well-known form

[+ )¢ (15)

s

G Jweg

where ¥ =exp(— jk,R)/27R, k?=egopow’ =
= [F~ 7.
In the metal-bounded case, G is still given by (15), but ¢
is given by the image method

€,k3, and

o0
y=exp(— jk,R)/2aR+2 Y, exp(— jk,R,)/27R,

n=1
(16)
where
R2=R>+(2nd)".

In the case of the stratified medium, finally, it can be
shown that G may be separated into TM(E) and TE(H)
parts yielding for its transverse part [15], [21]

G/(R.9)= joeo [ BN R.0)NAN  (173)
where
| §=CE§E+CH§H
gk =— gl = I,(AR)+ J,(AR)cos2¢
ngy,___ g§c=g)f'y=gy’i=12(>\R)sin2¢
gZ =~ gl = Jy(AR)~ (AR)cos2¢.  (17b)

In the case of N layers, (Fig. 2(c)) numbered from 0 to s
(s = N—1), one may find that C* 7 in the source layer is
given by

o @B Mexp Uz = h )]+ 85 exp (= )]

’ o Hexp(Uh,)—BF " exp(—Ush,)

(18a)

where the coefficients have to be determined recursively

(18b)
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n € (1,s), h, being the nth layers thickness z’= 0 and
U

H_ _~n_ E_ _“n_ “n-l
I[/n Unfl ‘Pn cn—l U;t
a E H 1+ E.H
(Bi) =1, il U2=N—¢,k2. (18¢)
1

On the other hand, for z=0, CF# itself is to be found
recursively in a simpler form

o CEI4 yET anhUh,
= YEH 4+ CE-HtanhU h
n n—1 n'*n

(19)

starting with C,=1.

In the case of two layers, the corresponding coefficients
of the TE and TM parts for z = 0 are given by
€ e UytanhUd + U,

E= S
47 U (U, tanhUd + € U,)
n_ &U, UtanhUd + U
~ 4qak? UytanhUd +

(20a)

where

UR=N—k2> U2=N—k2 d=h,. (20b)

V. ADMITTANCE MATRIX

The computation of the matrix elements in (9) presents
several difficulties. In the homogeneous and in the metal-
bounded cases, the external dyadic Green function has a
singularity at the origin with a 1/R> behavior, due to the
taking of a double derivative (15). Both derivatives may be
avoided by applying an integral identity, after projection of
the integral equation on the base functions. This allows one
to differentiate the base functions instead of the ¢ in (15)
[16].

The matrix elements are the result of two double integra-
tions over the aperture. The external term is integrated
twice analytically after a change of coordinates [4]. The
remaining two integrations must be performed numeri-
cally. The 1/R singularity in the imaginary part of the
operator is finally suppressed after transformation to polar
coordinates. For the internal term, on the other hand,
numerical integrations are not needed and the nondiagonal
terms vanish.

The admittance matrix [ y]=[g]+ j[b] is written as

[y"-"])

[»”] @)

the matrix elements being

1 ® ra/cos ¢ v
2 jepg [/0 fo 5 pa)

I /W/z'/(‘)b/sumf*;ﬁ”([),q)}\l/Rdeqb‘i‘ Yp,valj (22)

[T
Y,
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where
p=x—x"=Rcos¢ ¢g=y—y =Rsin¢

a=arctanb/a p,v=x,y

2 2
FX* = sz’j_ m‘mfw ij 1y nyz_m_flj 1)
iy s/3 a2 1 2 1y ab 1J2
l‘mfﬂz e yy 271y I’IJW2 1] [
PX - J YV = — J
Ej - ab fl 2 E] ks 4 b2 f2 1
(23a)
and

112 [0/ maF1/m)=5,(p)1/my£1/m,)]

iy b -
3-8 1/1F1/1) = 5.(0)(1/1,£1/1,)] (23b)
if m,=m, and/or [, =1, one obtains

Iz Sp)+(a=p)C(p)

mm,
, b
fZEIﬁSt(q)+(b_Q)CI(q)
4 1

if
L,=0,=0 f,=2(b—q) fa=0.

The following definitions have been used:

S, T S (T
: _/sin{7® 1 _/sin{ T
Cl(p)—{cos(am,p) c(4) {Cos(bl,q) (23d)

m:odd

(23¢)

me=m+m, [ =]+,
myg=m,—m, l,=1—1, [:even.

Finally, for the internal part, it can be found that

e —— ab—weom(d[(mlw)z—ﬁ
2jepe 8 v, a ¢
1 7% €01
)fxyzy'yx= _ - om-ol | l
2jepy 8y o
1 abm e e, |(7\*
VY — Yy Fomto Al _ 1.2
Y 2jepy 8 v [( b) ke|  (242)
with
ma\t (lm\*
=y (7 +(‘b—) ~k
k.=e k, (24b)

and €, €, stand for Newmann factors
¢ _ { 1, if m,1=0
om,! 2’

if m,l+0.

In the stratified case, the dyadic Green function operator
does not involve any derivatives, and the integral identity
mentioned in the homogeneous case cannot be used. The
1/R? singularity at the origin cannot be avoided. The
change of variables is made as in the homogeneous case
and the internal part does not change. The general term of



TEODORIDIS ef al.: OPEN-ENDED RECTANGULAR WAVEGUIDE

the admittance matrix is also given by (22), but in this case
we have

XX — ijfry
F;'j gxxf3 2
rx — gty
F;'/ gyxh1h4

E7 =g, hihy
(25)

Fy =g, it
where
i a —_
by -2 [G(p)=C(p)|L/m F1/m ]

b

ni - 2 [G(a)-Cl9)]1/1.F1/1] (26a)

T

when m;=m and/or [, =1
W -(p=a)S(p) hY-+(a=b)S(q). (260)

Besides the 1/R? singular term at the origin, the dyadic
Green function has poles on the real axis of the complex
spatial frequency plane when the dielectric is lossless.
Therefore, special techniques are necessary to evaluate the
infinite integral (17) on this axis. Hence, in the stratified
case, the numerical computation of the matrix elements
involves this infinite integral in addition to the surface
integrations.

VL

In order to solve the eigenvalue equation obtained with
the characteristic modes method, the surface integrations in
the admittance matrix have to be evaluated first. But in the
case of a stratified geometry, each contribution to the
surface integral is itself the result of an integration over the
entire plane of spatial frequencies. The Green function
may be expressed in terms of four different spectral in-
tegrals, the integrands of which depend only on AR. Ex-
pressing J,(AR) in (17), in terms of J; and J,, one obtains

If’”=/;mCE’”JO(>\R))\Rd>\

NUMERICAL COMPUTATIONS

27

In order to avoid prohibitive computation time, the
surface integrals are evaluated using interpolated values
after a number of integrations on the spatial frequency
plane computed for discrete values of R.

The evaluation of these integrals may involve two types
of difficulties: there may be poles or a branch point in the
integrand; the integrand may oscillate and may diverge for
increasing values of the argument.

It is always possible to treat the two problems separately
by division of the integration interval.

The following normalizations are made throughout:

A=A/k, R=kyR d=kd. (28)

The roots of the complex denominators of CZ and C¥
noted DZ and D¥ determine the poles of the integrands
defined in (27). The roots must be computed precisely in
order to ensure an accurate evaluation of the integrals.
When the medium is lossless, all the roots lie on the real
axis in the interval \/;m—; <A S\/fm—ax , and a very simple

157 = [TCP My (AR) d.
0
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imaginary
part

Fig. 3. Normalized values of D F versus A,.DIE=pDHE/yHE
Ayv=A/ky,e,=4,d=1cm, f=10 GHz.

algorithm may be used. In Fig. 3, DZ and D versus A are
shown for an example with two layers. The imaginary parts
vanish beyond the branch point A =1, where a discontinu-
ity of DB H is located. On the other hand, A = /e, is not a
branch point, and thus D% and their derivatives are
continuous at this point.

The number of roots for the two-layer case is predictable
and given by

k,d
NbE’”=Integer( ; Ve, —1 +n,E,) n {(1)5

(29)

As a matter of fact, D¥ always has at least one root.
This means that the first TM surface-wave mode has no
cutoff frequency. On the other hand, the D¥ has no roots
when the following condition is fulfilled: k,dye, —1 < 7/2.

The first difficulty in the integration of (27) may be
bypassed if the path is deformed on the real axis. The
integrals in (27) take the following form, when poles are
present:

157 = py [*CE Ay (AR)[AR] " dA
0

Il

~mi X REAL (AR)ANR]C™™,  n=0,1 (30)
where A, is the ith pole of CE-#, REH is the correspond-
ing residue, and PV denotes the principal Cauchy value of
the integral. The sum of residues in (30) represents the
contribution of TE and TM surface-wave modes and are
given by

REH = NEH (M)-l

A=A,

where N%  stands for the numerator of C£: .

In order to determine numerically the principal value of
the integrals, the real axis is first divided into a number of
intervals. A symmetrical integration interval centered on
each pole is chosen to simplify developments. Furthermore,
the branch point must always be the limit of an interval.

These integrals are evaluated by folding the intervals
around the poles. It can be shown [19] that the new
integrands are no longer singular at the pole location.
Neglecting possible numerical errors, the folded interval
integration is rigorously equivalent to straight integration
with symmetrical points around the pole.
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Fig. 4. The effect of the change of variables (33) on the form of C E
(a) Real part and (b) imaginary part of C E without any transformation
and (c) imaginary part of C¥ after the change of variables as defined in
(33). Ay =A/ky, ¢, =4, d=1 cm, tand = 0.001, f =10 GHz.

The second difficulty encountered is the treatment of the
oscillating integrand, which often diverges over the interval
[A,00], where 4> \/e—,; . A method specially developed
[19] to deal with Sommerfeld integrals is used here.

In the case of a lossy dielectric medium, the poles move
slightly away from the real axis, taking a small negative
imaginary part. Considering the denominators D ¥ in the
two-layer case as functions of the complex variables k, = A
+ jv and €, =€/(1+ jtand), and assuming that » is very
small, a Taylor’s series expansion around the point (A% ¢’)
gives

d(DE )/ de,
3(DE’H)/3kp

}\E,H=>\OE,H E.H
b i

i

y5 " =¢ tand (32)

where the superscript 0 denotes the location of the ith pole
in the lossless case.

The accuracy of these approximate formulas is very good
for a very large range of tand. When this is not the case,
these values may still be used as the initial solution in an
optimization process yielding a very fast convergence.

In the lossy case, the pole shift, as small as it may be,
changes considerably the numerical procedure for the
evaluation of the integral defined in (27). The principal
value becomes a regular integral and the residue term
vanishes. This fact does not mean that the surface waves
vanish too. As a matter of fact they still propagate, but
with an exponential attenuation. Furthermore, the in-
tegrand is now complex. The real part follows roughly the
lossless behavior but vanishes where the singularity was
found before. However, the numerical techniques used in
the lossless case are still useful. On the other hand, the
imaginary part shows a strong peak at A =A,, which
cannot be handled by standard numerical integration. To
this end we use a change of variables, transforming a
strongly peaked behavior into a smooth one [20}, which can
be integrated numerically without difficulties (Fig. 4). The
change of variables is the following:

f=atan[(A—2,)/»]. (33)

With this technique, the interval of integration around
A, does not matter anymore for the imaginary part.
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VSWR

!

fiGHz)

phase a

Fig. 5. Comparison of theoretical results for (a) one, (b) three, and (c)
ten modes with measured values (®) for radiation in an homogeneous
medium (air).

Finally, the singularity of the Green function at the
origin (R = 0) must be extracted. It can be shown that the
singularity in the stratified case is the same as the one for
the homogeneous case. Therefore, the singularity is avoided
by expressing the dyadic Green function for the stratified
geometry as the sum of the homogeneous dyadic Green
function with the difference of the two dyadic Green
functions. The singularity of the homogeneous term is
avoided by treating it in the usual way described in Section
V, while the difference term is not singular, provided the
homogeneous dyadic Green function is expressed in a form
showing its explicit 1/R? behavior.

VII. NUMERICAL RESULTS AND EXPERIMENTAL

VERIFICATIONS

The numerical results for the homogeneous case have
been checked against experiment by measuring the reflec-
tion coefficient versus frequency for the open waveguide
radiating into air. The measurements are reported in Fig. 5,
and show a very good agreement with theory. In the same
figure, comparison is made with theoretical results showing
the contribution of higher order modes and of cross polari-
zation. Fig. 6 shows the importance of cross polarization in
the stratified medium. Measurements have also been made
for dielectric slabs of known properties both with and
without a metallic plate. Results and comparison with the
theory are shown in Table 1.



TEODORIDIS et al.: OPEN-ENDED RECTANGULAR WAVEGUIDE

VS WR

244 -

160-,

e

165+ b

1 phase

Fig. 6. Convergence of VSWR and phase as a function of the number N
of modes considered (a) with and (b) without cross-polarized magnetic
current. €, = 4.2, tan8 = 0.005, d = 6.52 mm, f =10 GHz.

TABLEI

=10 GHz Sample Metal-backed Stratified
Dielectric measured in method geometry
material waveguide

€, tand €, tand €, tand
Stycast 4 42 0.005 43 0.005 4.2 0.005
d=6.52 mm
Stycast 9 9.6 0.0007 9.8 0.001 9.7 0.0007
d = 6.56 mm
Hf 2050 7.5. 0.012 79 0.008 7.6 0.011
d=6.57 mm
Aracast 3.0 0011 3.1 0012 3.0 0.010
d=972cm

VIII. INVERSION OF COMPUTED DATA

In order to solve the inverse problem, ie., deduce the
complex permittivity from the measurements of the reflec-
tion coefficient, there are two possibilities, if one wishes to
avoid the introduction of the complete analysis program
into a sluggish optimization loop [11]. For a given
frequency, charts similar to that given in [15] and [16] may
be computed and plotted. Interpolation between computed
points is done graphically. On the other hand, a continuous
interpolation can be done from the discrete points on the
chart by fitting on them a two-dimensional polynomial
[16]. This polynomial approximation is found by a
least-square method and may be written as ‘

33 o ¢

f(x2)= L X Chy! with r={ls 9
where x and y are normalized values of S-sin¢ and
S-cos¢ ranging between 0 and 1 [16], S standing for the

VSWR and ¢ for the phase of the reflection coefficient.
An example of the accuracy provided by the polynomial
approximation for an infinite dielectric medium gives 0.2-
percent average error for 1.4 < e, <10, and 1.1 percent for
0 < tand <1. In the case of a slab, the situation is more
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complicated, since there are many parameters. The use of
the polynomial expansion brings the problem within the
range of desktop minicomputers and even of some' pro-
grammable pocket calculators.

IX. CoNCLUSION

The theory developed here is suitable for both infinite
and stratified dielectric media. In practice, a material may

" be considered as being infinite when the wave diffracted

from the aperture is absorbed entirely without further
reflection. This condition is verified when the losses and
the thickness of the material are large enough. Besides, a
slab may or may not be backed by a metallic plate. When
losses are small, the metallic back plate is objectionable
because it enhances the reflection coefficient, yielding high
VSWR. Both cross polarization and higher order modes
are taken into account in our analysis and their importance
has been shown, particularly in the stratified case.

Special numerical techniques are used for the calculation
of the dyadic Green function in a stratified medium, and
particular attention is given to the numerical computation
for a lossy medium.

Finally, experimental results are in very good agreement
with computed values, and an inversion technique, very
attractive and suitable for a number of applications, is
proposed.
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