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The Reflection from an Open-Ended
Rectangular

Waveguide Terminated by a Layered
Dielectric Medium

VIRON TEODORIDIS, THOMAS SPHICOPOULOS, AND FRED E. GARDIOL, SENIOR MEMBER, IEEE

Abstract —The measurement of reflection from an open-ended wave-

guide is a simple and nondestructive technique for determining the dielec-

tric properties of materiafs. A flange-mounted waveguide is considered, the

flange being pressed on an unknowIs materiaf which may be of fiuite or

infinite’ thickness. The relationship finking the reflection coefficient to the

dielectric ,properties is obtained from a theoretic~ analysis of the electro-

magnetic field in the vicinity of the aperture. The theory includes the

effects of both cross polarization and higher order modes. An integrnt

eq’uation is obtained, the kernel of which is the dyadic Green function in

each medhrm. The method of characteristic modes is used for the numeri-

caf computation. The thenreticaf results &e in good agreement with

experimental measurements. Futihermore, a simple and I&ndy technique

for data inversion is provided.

I. INTRODUCTION

T ODAY, open-ended waveguides are used in a number

of new applications of microwaves and millimeter

waves’ to the fields of material measWements and biomedi-

cal engineering. Among these are the nondestructive mea-

surement of material properties and medical techniques

such as thermography and hyperthermia. Indeed, the di-

electric properties of art unknown material or biological

tissue can be determined in a noninvasive way from a

measured reflection coefficient, provided a theoretical rela-

tion to the dielectric properties of the material is available.

The radiation from a waveguide covered by a dielectric

slab received considerable attention several years ago in

order to understand the behavior of antennas on space

vehicles’ during the reentry into the Earth’s atmosphere.

The, open-ended rectangular waveguide radiating through a

dielectric slab [1]-[3] or directly into the half-space [4], [5]
was first treated approximately by variational methods.

l%ese publications only considered the contribution of the

dominant mode in the aperture field.

Later on, the analysis of the rectangular waveguide

radiating into an infinite dielectric material was made

including higher order modes [6]–[12], but cross polari-

zation was not always taken into account [6], [11]. A
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number of mathematical formulations associated with dif-

ferent physical models have been used to describe the

problem, and various numerical techniques have been ap-

plied. Indeed, beside variational methods [9]–[11], an in-

tegral formulation was developed [6]–[8] as well as a matrix

correlation method [12]. Furthermore, a physical model

considering the half-space as a second waveguide of a very

large cross section was proposed [13]. We do not quote

here a number of papers modeling the rectangular wave-

guide as a parallel plate waveguide. Such an approach

neglects, among other effects, the cross-polarized electric

field.

The rectangular waveguide radiating into a layered

medium aroused less attention. A rigorous development

including higher order modes and C;OSSpolarization was

made for the dielectric coated waveguide antenna by means

of a variational principle [9]. More recently, a method

using the model of tlie transition to an oversized waveguide

was suggested for the study of applicators for multilayered

configuration of tissues [14].

This paper presents an integral formulation applicable

either to a stratified or an infinite dielectric medium. The

actual field distribution is considered, including higher

order modes as well as cross polarization. Furthermore, the

contribution of surface waves appears explicitly and the

formulation is suitable for near field calculations.

Boundary conditions specifying the continuity of the

tangential field components yield an integral equation, the

kernel of which is the dyadic Green function inside and

outside the waveguide. This equation is solved by the

method of characteristic modes [17], which yields an eigen-

value equation independent of the excitation.

The solution of the field equation yields the reflection

coefficient for a known dielectric medium, while the solu-

tion of the inverse problem is needed in practice. Hence,

we propose here a simple method for the computation of

the complex permittivity corresponding to a measured re-

flection coefficient.

II. GEOMETRY AND ASSUMPTIONS

The geometry of the problem involves an internal and an

external region, separated by an infinite conducting plane.

The internal region is the inside of the rectangular wave-
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u
Fig. 1. Geometry of the problem,

Fig. 2. The three basic configurations.

guide, while the external one is the half-space filled by an
isotropic and nonmagnetic dielectric medium (Fig. 1). A

metallic flange terminating the waveguide is represented by

the infinite conducting plane. The aperture itself is mod-

eled as an equivalent magnetic current flowing on the

uninterrupted conducting plane. This current radiates into

both regions, and couples the dominant mode in the wave-

guide to higher order modes. The transverse electric field

may be either parallel or cross polarized with respect to the

dominant mode. Furthermore, we assume that the incident

wave propagates through the dominant mode of the wave-

guide, filled with a lossless dielectric of permittivity cc.

The external dielectric medium may be lossy or not, and

fills the half-space z >0. We have considered three differ-

ent configurations (Fig. 2):

a) infinite dielectric medium of permittivit y c, filling

the whole half-space,

b) a dielectric medium of finite thickness d, but with

infinite transverse dimensions terminated by a

metallic plane parallel to the flange,

c) a dielectric medium of finite thickness and un-

terminated, yielding a stratified structure.

HI. INTEGRAL EQUATION AND METHOD OF RESOLUTION

The aperture, as seen from the outside (z > O), is re-

placed by a perfectly conducting metallic w@ on which

flows an equivalent magnetic surface current &fe. Similarly

from the inside, we consider a short-circuit plate termina-

tion on which flows a surface current fii.t. Applying the

continuity condition of the tangential magnetic field on the

aperture, one obtains [16]

‘1(7) = – ;j [~(~, o+=(v)] .ti(?’) dS’. (1)
s’

~ represents the extem_al dyadic Green function in the

dielectric medium and ~ the internal dyadic Green func-

tion in the waveguide. S’ is the aperture area, fil the

transverse component of the incident magnetic field. The

equivalent magnetic current Z is proportional to the ac-

tual tangential electric field in the aperture ~~. Thus, one

may write

111= UOY1%l (2a)

[
ftl=-li?e =$int=zzxza=uo WI+ ~rnwn1(2b)

~=1

where the ~~ are the orthogonal transverse dependence

functions of the magnetic field, 1’1 is the reflection coeffi-

cient of the dominant mode, r. the relative amplitudes of

the higher order evanescent modes, UO the amplitude of the

incident wave, and Y1 its wave admittance.

Taking the scalar product of the incident field by the

magnetic current and applying orthogonality conditions

for the W., one obtains for the reflection coefficient rl

rl=(u:yJ1<E 1,fi>-l. (3)

An expression equivalent to (3) maybe obtained for the

equivalent admittance of the aperture. Indeed, (1) may be

written as [16]

El= – [1/(1– rl)]~ [@, ?’)+ ZO(7, ?’)] .fi’dS’ (4)
s’

whgre ~0 is obtained by omitting the dominant-mode term

in Z.

Taking the scalar product of (4) by the magnetic current,

one obtains, using (3)

Equations (l)–(5) are the mathematical expressions which

describe the physical problem, as defined in Segticm II. The

method of characteristic modes is used for their resolution.

The characteristic mode currents of a structure form a

set of equations particular to the geometry of the structure

and independent of the excitation. They are the solutions

of an eigenvalue equation, which may be expressed in

matrix form after projection onto a set of arbitrary base

functions. Their scalar product with the excitation yields

the actual current on the structure.
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Let yOP stand for either the integral operator in (1) or

(4). It maybe written as

Yop(@ = &p(fi)+@op(fi) (6)

where gOP and bOP are real symmetric operators and gOP

must be a positive semi-definite operator, since the power

radiated by Z on S is positive semi-definite [18]. The

current W may be expressed as a linear combination of the

characteristic currents fi~, and an eigenvalue equation is

obtained [17]

bOP(ti~) = ~~g.P(fi~) (7)

where the power radiated by each characteristic current is

considered to be unitary.

The arbitrary set of base functions used to expand the

characteristic currents is chosen to be the set of transverse

modal functions in the waveguide. The projection of the

characteristic currents on the base functions yields

tik = ~uknwn (8)
n

where u~n are unknown constan:s.

The scalar product of (7) by kf~, and replacement of the

characteristic currents by their series expansion (8), yields a

matrix equation

[b][u~]=~,[g][u,] (9)

in which the matrix elements are

bin.= (tire, bOP(ti.)) gm. =(%og.,(~. )). (10)

The resolution of this equation [18], yields the eigenval-

ues X ~ and eigenfunctions ilk. The actual current ikf,

however, is a function of the excitation. We define now the

coefficients 1~ by

1~= (fi~, ~1) (11)

and the actual magnetic current Z is found to be [17]

‘=; (l+l;AJ‘k” (12)

Once eigenvalues and eigenfunctions are found from (9),

the reflection coefficient and the aperture admittance may

be computed from (3) or (5) using (12), (8), and (2a),

yielding the relations

(13)

where ii~l and A k stand for the eigenfunctions and eigen-

values found from the integral operator defined in (l),
while ti~l and ~; are associated with the integral operator

defined in (4).

IV. DYADIC GREEN FUNCTIONS

When both components of the electric field on the

aperture are considered and when, furthermore, the near

field distribution is to be evaluated, a dyadic Green func-

tion must be used in the integral equation instead of the

scalar one.

The external dyadic Green function ~ takes different

forms, according to the geometry of the dielectric medium,

while ~ is the dyadic Green function in th~ rectangular

waveguide. When only the transverse part of ~ is needed, a

simple expression may be found [16]

n=l

(14)

In the homogeneous case, ~ has the well-known form

(15)

where ~ = exp(– jk,R)/2rrR, k? = C,COI.LOU2= c,k~, and

R = l?– 7’1.

In the metal-bounded case, ~ is still given by (15), but i

is given by the image method

$ =exp(– jk~R)/2vR+2 ? exp(– jk,R.)/2TR.
~=1

where

R;= R2 + (2rzd)2.

In the cas~ of the stratified medium, finally, it

shown that G may be separated into TM(E) and

parts yielding for its transverse part [15], [21]

~,(R, @)= jwcOJm~(A,R,@)~dX
o

where

‘ ~= ~E~E+ ~H~H

g:X=–g; =.lo(AR)+.12(~R) cos2@

g:y ‘= gyx – gxy
E – H =g&=J2(AR)sin2@

g;=–g:= JO(~R)– J2(AR)cos2@.

(16)

can be

TE(H)

(17a)

(17b)

In the case of N layers, (Fig. 2(c)) numbered from O to s

(s= N – 1), one may find that CE’ H in the source layer is

given by

~~,H= a~’~exp [– U~(z–h, )]+ P~~Hexp[U,(z- h,)]
s

aE’Hexp(U~h, )–/3,s ~’~exp(–U~h,)

(18a)

where the coefficients have to be determined recursively

(1- $~,H)exp(-Un_lhn_l) am-, ‘,H

)( )(l+~~’H)exp(- U._lhn_,) B.-1
(18b)

/— –,
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n 6 (1, s ), h ~ being the n th layers thickness z’= O and where

~:=+ ~:_ ‘n U;l p=.x-x’=Rcos~ q=y–y’=Rsin~

n–1 c n—1 n a=arctan b/a p,v=x, y

On the other hand, for z = O, C,E’ H itself is to be found lLm1r2

(

I,I,T2
recursively in a simpler form

F;. = –
~fl’’f,”

~~ E k:f;l –

)

~f,” f;’

(23a)

starting with CO=1.

In the case of two layers, the corresponding ,coefficients

of the TE and TM parts for z = O are given by f :-:[$(q)(l/z. ~l/z.)-~z(q)(l/z, *V%)] (23b)

c,U, U, tanh U,d + U.
cH=—

4~k: % tnhU,d + U,
(20a)

where

U,2=~2–k: U:= A2–k: d=hl. (20b)

V. ADMITTANCE MATRIX

The computation of the matrix elements in (9) presents

several difficulties. In the homogeneous and in the metal-

bounded cases, the external dyadic Green function has a

singularity at the origin with a l/R3 behavior, due to the

taking of a double derivative (15). 130th derivatives may be

avoided by applying an integral identity, after projection of

the integral equation on the base functions. This allows one

to differentiate the base functions instead of the + in (15)

[16].

if m, = ml and/or 1, = [I one obtains

f~ ..& $(p)+ (a-p) ci(p)

I

f:=~$~,(~)+(b-q)c,(q)
1

if

ll=lJ=O f2=2(b–q) f,=O. (23c)

The following definitions have been used:

m~=m, +ml l.= I,+lJ, m: odd

m~=m, –m, 1~=1, –il, 1: even.

Finally, for the internal part, it can be found that

–-SEWyxx=_ 1
2jupo 8

The matrix elements are the result of two double integra-

tions over the aperture. The external term is integrated
yv.v= y,.. = _ 1 ~3~0m~0[ m ~

2 japo 8yk ‘ ‘

twice analytically after a change of coordinates [4]. The

remaining two integrations must be performed numeri-

–-=[i~12-k’l ‘24a)

y.PY= – 1

tally. The l/R singularity in the imaginary part of the 2japo 8 y~

operator is finally suppressed after transformation to polar with

coordinates. For the internal term, on the other hand,

numerical integrations are not needed and the nondiagonal

terms vanish.
,k={m

The admittance matrix [y] = [g]+ j[b] is written as
kc= ~kO (24b)

([Yxxl [Yx”l 1 and c~~, c~[ stand for Newmann factors

‘y]= [Y””xl [Yyyl
(21)

c
{

1, ifm, l=o
om, [= 2, ifm, l#O.

the matrix elements being
In the stratified case, the dyadic Green function operator

1

[J J

does not involve any derivatives, and the integral identity
YJ’ = – a “1’”’+~fu( ~, q)

2jtipo ~ ~ mentioned in the homogeneous case cannot be used. The

l/R3 singularity at the origin cannot be avoided. The

+
J./ 1‘/2b/s’n+~~u(p,q)~RdRd@ + yp”~,, (22) change of variables is made as in the homogeneous case
a o and the internal part does not change. The general term of
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the admittance matrix is also given by (22), but in this case

we have

l?;’ = gxxf;jf;J ~y = gxyh;Jh~

~.~ = gyxh ~h~ ~~ = ~yyf;jf~ (25)

where

h~. +:[<.(p)– CZ(p)][l/m~Tl/nz,]

h~-+~[~(q)– C,(q) ][l/l~Tl/1,] (26a)

when mi = mJ and/or 1, = IJ

h;.@a)S i(p) h:-i(q–b)$(q). (26b)

Besides the l/R3 singular term at the origin, the dyadic

Green function has poles on the real axis of the complex

spatial frequency plane when the dielectric is lossless.

Therefore, special techniques are necessary to evaluate the

infinite integral (17) on this axis. Hence, in the stratified

case, the numerical computation of the matrix elements

involves this infinite integral in addition to the surface

integrations.

VI. NUMERICAL COMPUTATIONS

In order to solve the eigenvalue equation obtained with

the characteristic modes method, the surface integrations in

the admittance matrix have to be evaluated first. But in the

case of a stratified geometry, each contribution to the

surface integral is itself the result of an integration over the

entire plane of spatial frequencies. The Green function

may be expressed in terms of four different spectral in-

tegrals, the integrands of which depend only on AR. Ex-

pressing J2(XR) in (17), in terms of .JOand .lI, one obtains

@H=
f

‘CE’HJO(~R)ARd~
o

~;, H=

J
~CE’HJ1(AR) dA. (27)

o

In order to avoid prohibitive computation time, the

surface integrals are evaluated using interpolated values

after a number of integrations on the spatial frequency

plane computed for discrete values of R.

The evaluation of these integrals may involve two types

of difficulties: there may be poles or a branch point in the

integrand; the integrand may oscillate and may diverge for

increasing values of the argument.

It is always possible to treat the two problems separately

by division of the integration interval.

The following normalizations are made throughout:

A = A/k. R= kOR d= kod. (28)

The roots of the complex denominators of C ~ and CH

noted DE and D H determine the poles of the integrands

defined in (27). The roots must be computed precisely in

order to ensure an accurate evaluation of the integrals.

When the medium is lossless, all the roots lie on the real

axis in the interval ~ < A < ~, and a very simple

363

D:‘

Fig. 3. Normalized values of D‘, E versus A ~. D# E = 1)’, ‘/ U.H,’,

~,v=~ikO,c, =4, d=lcm, f=io G&. “

algorithm may be used. In Fig. 3, DE and D H versus A are

shown for an example with two layers. The imaginary parts

vanish beyond the branch point A =1, where a discontinu-

ity of D” H is located. On the other hand, A = & is not a

branch point, and thus D” H and their derivatives are

continuous at this point.

The number of roots for the two-layer case is predictable

and given by

NbE’ H = Integer (y-+.;) .:=(:.5

(29)

As a matter of fact, DE always has at least one root.

This means that the first TM surface-wave mode has no

cutoff frequency. On the other hand, the D H has no roots

when the following condition is fulfilled: kod~~ < 77/2.

The first difficulty in the integration of (27) may be

bypassed if the path is deformed on the real axis. The

integrals in (27) take the following form, when poles are

present:

/
~E,H= Pv ‘cE.HJn(~R)[~R](l-n)d~

o

“HJn(A,R)[A ZR](l-”),— rj~R, n = 0,1 (30)

where A i is the i th pole of C”’, R ~ H is the correspond,

ing residue, and P V denotes the principal Cauchy value of

the integral. The sum of residues in (30) represents the

contribution of TE and TM surface-wave modes and are

given by

where N~’ H stands for the numerator of C” ~.

In order to determine numerically the principal value of

the integrals, the real axis is first divided into a number of

intervals. A symmetrical integration interval centered on

each pole is chosen to simplify developments. Furthermore,

the branch point must always be the limit of an interval.
These integrals are evaluated by folding the intervals

around the poles. It can be shown [19] that the new

integrands are no longer singular at the pole location.

Neglecting possible numerical errors, the folded interval

integration is rigorously equivalent to straight integration

with symmetrical points around the pole.
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llg. 4. The effect of the change of variables (33) on the form of CE.
(a) Real part and (b) imaginary part of CE without any transformation
and (c) imaginary part of CE after the change of variables as defined in

(33). XN = A/ko, c, =4, d=l cm, tana =0.00L ~=lo GHz.

The second difficulty encountered is the treatment of the

oscillating integrand, which often diverges over the interval

[A, m], where xl> =. A method specially developed

[19] to deal with Sommerfeld integrals is used here.

In the case of a lossy dielectric medium, the poles move

slightly away from the real axis, taking a small negative

imaginary part. Considering the denominators D” ~ in the

two-layer case as functions of the complex variables kP = A

+ jv and c, = c;(1 + j tan 8), and assuming that v is very

small, a Taylor’s series expansion around the point (A!, c; )

gives

~:, H = ~OE, H v,E’H=c; tan8 8( DE’H)’d6s (32)
a(DE’H)/akp

where the superscript O denotes the location of the i th pole

in the lossless case.

The accuracy of these approximate formulas is very good

for a very large range of tan 8. When this is not the case,

these values may still be used as the initial solution in an

optimization process yielding a very fast convergence.

In the lossy case, the pole shift, as small as it may be,

changes considerably the numerical procedure for the

evaluation of the integral defined in (27). The principal

value becomes a regular integral and the residue term

vanishes. This fact does not mean that the surface waves

vanish too. As a matter of fact they still propagate, but

with an exponential attenuation. Furthermore, the in-

tegrand is now complex. The real part follows roughly the

lossless behavior but vanishes where the singularity was

found before. However, the numerical techniques used in

the lossless case are still useful. On the other hand, the

imaginary part shows a strong peak at A = A,, which

cannot be handled by standard numerical integration. To

this end we use a change of variables, transforming a

strongly peaked behavior into a smooth one [20], which can

be integrated numerically without difficulties (Fig. 4). The

change of variables is the following:

6=atan[(A-A,)/vZ]. (33)

With this technique, the interval of integration around

Al does not matter anymore for the imaginary part.

1.7

1,6

1.5

-70

-80

/. \\\

8 9 10 11 12 f [GHz]

I~haae \ a

Fig. 5. Comparison of theoretical results for (a) one, (b) three, and (c)

ten modes with measured vatues (.) for radiation in an homogeneous
medium (air).

Finally, the singularity of the Green function at the

origin (R = O) must be extracted. It can be shown that the

singularity in the stratified case is the same as the one for

the homogeneous case. Therefore, the singularity is avoided

by expressing the dyadic Green function for the stratified

geometry as the sum of the homogeneous dyadic Green

function with the difference of the two dyadic Green

functions. The singularity of the homogeneous term is

avoided by treating it in the usual way described in Section

V, while the difference term is not singular, provided the

homogeneous dyadic Green function is expressed in a form

showing its explicit l/R3 behavior.

VII. NUMERICAL RESULTS AND EXPERIMENTAL

VERIFICATIONS

The numerical results for the homogeneous case have

been checked against experiment by measuring the reflec-

tion coefficient versus frequency for the open waveguide

radiating into air. The measurements are reported in Fig. 5,

and show a very good agreement with theory. In the same

figure, comparison is made with theoretical results showing

the contribution of higher order modes and of cross polari-

zation. Fig. 6 shows the importance of cross polarization in

the stratified medium. Measurements have also been made

for dielectric slabs of known properties both with and

without a metallic plate. Results and comparison with the

theory are shown in Table I.
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AvSWR
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Fig. 6. Convergence of VSWR and phase as a function of the number N
of modes considered (a) with and (b) without cross-polarized magnetic

current. c, = 4.2, tan 8 = 0.005, d = 6.52 mm, ~ =10 GHz.

TABLE I

f= 10 GHz Sample Metal-backed Stratified
Dielectric measured in method geomety
material waveguide

: tanc$ ; tana : tana
Stycast 4 4:2 0.005 4:3 0.005 4:2 0.005
d = 6.52 mm
Stycast 9 9.6 0.0007 9.8 0.001 9.7 0.0007
d = 6.56 mm
Hf 2050 7.5 0.012 7.9 0.008 7.6 0.011
d = 6.57 mm
Aracast 3.0 0.011 3.1 0.012 3.0 0.010
d = 9.72 cm
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complicated, since there are many parameters. The use of

the polynomial expansion brings the problem within the

range of desktop minicomputers and even of some pro-

grammable pocket calculators.

IX. CONCLUSION

The theory developed here is suitable for both infinite

and stratified dielectric media. In practice, a material may

be considered as being infinite when the wave diffracted

from the aperture is absorbed entirely without further

reflection. This condition is verified when the losses and

the thickness of the material are large enough. Besides, a

slab may or may not be backed by a metallic plate. When

losses are small, the metallic back plate is objectionable

because it enhances the reflection coefficient, yielding high

VSWR. Both cross polarization and higher order modes

are taken into account in our analysis and their importance

has been shown, particularly in the stratified case.

Special numerical techniques are used for the calculation

of the dyadic Green function in a stratified medium, and

particular attention is given to the numerical computation

for a lossy medium.

Finally, experimental results are in very good agreement

with computed values, and an inversion technique, very

attractive and suitable for a number of applications, is

proposed.
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VIII. INVERSION OF COMPUTED DATA

In order to solve the inverse problem, i.e., deduce the

complex perrnittivity from the measurements of the reflec-

tion coefficient, there are two possibilities, if one wishes to

avoid the introduction of the complete analysis program

into a sluggish optimization loop [11]. For a given

frequency, charts similar to that given in [15] and [16] may

be computed and plotted. Interpolation between computed

points is done graphically. On the other hand, a continuous

interpolation can be done from the discrete points on the

chart by fitting on them a two-dimensional polynomial
[16]. This polynomial approximation is found by a

least-square method and may be written as

fp(X, y)= ~ ~ C&yi withp= (:~~ (34)
i=lj=l

where x and y are normalized values of S. sin@ and

S. cos @ ranging between O and 1 [16], S standing for the

VSWR and @ for the phase of the reflection coefficient.

An example of the accuracy provided by the polynomial

approximation for an infinite dielectric medium gives 0.2-

percent average error for 1.4 <c, <10, and 1.1 percent for

0< tan 8<1. In the case of a slab, the situation is more

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
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